

quaculture Biosecure Systems

BIOSECURITY IN SHRIMP FARMING

Practical Biosecurity Risk Management Measures

Most of world shrimp farming companies have adopted the "casino" risk management strategy:

As a result, billions have been lost due to diseases...causing disruption of the supply chain, devastating social impacts, loss of confidence in the industry and loss of investment.

Source: 2016 Survey from the Global Aquaculture Alliance

□ A disease is a business risk.

□ No profitable zero risk approach.

Biosecurity is a practical risk management tool to **reduce the economic impact of diseases**.

Areas of production	Level of impact of a disease outbreak on long term business sustainability	
Broodstock production (nucleus breeding)	Extremely high	
Broodstock maturation & nauplii production	High	
PL production	High	
Nursery production	Moderate	
Farm production	Moderate	
Quarantine	Low	

Biosecurity Management Approach

The Shrimp Farming Process

- \succ Shrimp production process \rightarrow series of interdependent activities.
- \succ Common risks of pathogen transmission \rightarrow disease outbreak.

Vertical Pathogen Transmission

Horizontal Pathogen Transmission

The Importance of Sampling

- □ Monitoring pathogen status in shrimp throughout the production process.
- Pathogen prevalence is the percentage of a population that is affected with a particular pathogen at a given time.
- □ If a batch sample is positive it means that the batch is positive.
- □ If a batch sample is negative it <u>only</u> means that the sample is negative.
- **□** Random and directed samples (symptomatic).
- □ Sample for wet mount (microscopic health assessment).
- □ Sample for histology only on live symptomatic.
- Sample for PCR (non-destructive or destructive, preferably from symptomatic); importance of the back-up sample and the choice of tissues.

Practical Example: The Importance of the Choice of Tissue for WSSV detection

- □ Infection trial by ingestion resulted in 100% of WSSV positive shrimp.
- For each shrimp, tissues individually tested by quantitative PCR: pleopods, gills, lymphoid organ (LO) and hemolymph (HL).
- Results indicate an average of 10.5 viral copies (<u>detection limit is 10</u>), with different infection levels among <u>tissues from the same shrimp</u>.

- Pleopods: P1-P10
- Gills
- Hepatopancreas: HP
- Lymphoid organ: LO
- Viral copies: VC

VC

Practical Example: The Importance of the Choice of Tissue for WSSV detection

Conclusions from the infection trial:

- For non-destructive samples, clipping one pleopod is easy enough and non-lethal, however there is ~20% probability not to detect WSSV in an infected shrimp.
- For destructive samples, a combination a tissues allows for detection of 100% of WSSV infected shrimp even for levels < 10 viral copies.</p>

WSSV Infection Trial BSD003

Minimizing the Risks from the Movement of Persons, Equipment and Tools

Common Risk Mitigation Measures for Indoor Facilities

□ INFRASTRUCTURE:

- ✓ Fenced, concrete buildings or greenhouses, zone segregated (access, inlet, effluent and air), able to drain and dry.
- ✓ Algae mass culture tanks indoor with insect nets.
- ✓ Single site entry for persons, controlled service gate and drop-off point for deliveries without entry.

ACCESS:

- ✓ Entry restricted to authorized persons only and with change to uniform. If disease outbreak access restriction increases.
- ✓ Shower for quarantine mandatory on exit if imported batch, recommended on entry for all indoor facilities.
- ✓ Hand-wash and foot dip with disinfectant (>680mV ~ 350ppm quaternary ammonia, 600ppm iodine or 30ppm chlorine).
- $\checkmark\,$ Entry of raw seafood products forbidden.

Common Risk Mitigation Measures for Indoor Facilities

By Francois Brenta

Quarantine

Common Risk Mitigation Measures for Indoor Facilities

□ EXAMPLES OF INFRASTRUCTURE AND ACCESS RISK MITIGATION MEASURES:

Nursery

Indoor algae mass culture

Individual spawning

Individual hatching

By Francois Brenta

Nursery phase I

Common Risk Mitigation Measures for Indoor Facilities

□ WATER TREATMENT:

- ✓ Inlet water filtered to the lowest possible level and disinfected (680mV for 10 minutes).
- ✓ Mature water (biofloc inoculum or probiotics). For broodstock production, post-larval and nursery production, avoid photo-autotrophic systems and promote the use of heterotrophic dominant biofloc systems.
- ✓ Effluent from quarantine filtered to the lowest possible level and disinfected (680mV for 10 minutes).

GENERAL PROFILAXIS:

- ✓ Equipment and tools routinely cleaned, disinfected, rinsed with disinfected water and left to dry.
- ✓ Tank scrubbing to remove biofilm, rinsed and filled-up with water and acid to reach pH of 4, followed by base to reach pH of 12, followed by rinsing and drying.
- ✓ Organic wastes incineration or disposal by equivalent means.

Common Risk Mitigation Measures for Indoor Facilities

EXAMPLES OF WATER TREATMENT SYSTEMS:

Untreated sea water

Common Risk Mitigation Measures for Indoor Facilities

□ EXAMPLES OF GENERAL PROFILAXIS:

Individual tank equipment

Common Risk Mitigation Measures for Outdoor Facilities

□ INFRASTRUCTURE:

- ✓ Nursery and intensive grow-out with crab fence and bird net, risk zone segregation (access, inlet and effluent), able to drain and dry.
- ✓ Semi-intensive farms with zone segregation (access, inlet and effluent), without seepage, able to drain and dry.
- ✓ Controlled farm gate.

ACCESS:

- ✓ Entry restricted to authorized persons only. If disease outbreak access restriction increases.
- ✓ Entry of raw seafood products forbidden.

Common Risk Mitigation Measures for Outdoor Facilities

□ EXAMPLES OF BIOSECURE OUTDOOR INFRASTRUCTURE:

Grow-out

Grow-out with bird net and crab fence

Central drain (shrimp toilet)

Nursery

Common Risk Mitigation Measures for Outdoor Facilities

□ WATER TREATMENT:

- ✓ For all farm production systems, inlet water filtered to the lowest possible level and for intensive nursery and intensive grow-out (ideally drum filtration), disinfected with 0.5ppm Trichlorfon + 0.5ppm Copper Sulfate and 10 days retention time or with ozone at 680mV for 10 minutes contact time and 2 hour retention time.
- ✓ Matured water (biofloc inoculum or probiotics). For intensive nursery and intensive grow-out , avoid photoautotrophic systems and promote the use of heterotrophic dominant biofloc systems.

GENERAL PROFILAXIS:

- ✓ For ponds and canals, removal of fouling organisms and dry-out; if dry-out is not feasible or if presence of crustaceans, proceed with filling-up to cover target areas and disinfect with 2ppm Trichlorfon. Validate absence of crustaceans, if necessary repeat disinfection until termination is achieved and drain.
- ✓ Equipment and tools routinely cleaned, disinfected and left to dry.
- ✓ Organic wastes buried or disposal by equivalent means.

Common Risk Mitigation Measures for Outdoor Facilities

Common Risk Mitigation Measures for Outdoor Facilities

□ EXAMPLES OF FARM PREPARATION:

Application of chemicals for disinfection

Survival cages for (PL) stocking

Common Risk Mitigation Measures for Outdoor Facilities

EXAMPLES OF GENERAL FARM PROFILAXIS:

Clean screens

Pond-wise clean tool

Clean bag-net

Clean cast-net

Specific Risk Mitigation Measures for Quarantine

By Francois Brenta

Specific Risk Mitigation Measures for Quarantine

Specific Risk Mitigation Measures for Broodstock Breeding Program

Specific Risk Mitigation Measures for Maturation

Specific Risk Mitigation Measures for Hatchery

Specific Risk Mitigation Measures for Outdoor Nurseries and Farms

Future Challenges of the Shrimp Farming Industry

Diseases.

- Increasing competition for land and energy.
- Increasing demand of protein for human consumption.
- > Wastes.
- Climate change.
- Stricter regulations.

Impact of Biosecurity in the Future of Shrimp Farming

Increasing development of intensive biosecure projects (high yield-low footprint)

- Genetics: growth, disease resistance and reproductive development.
- □ Super-intensification.
- Inland.
- Ground water or water treatment (ozone).
- □ Zero water discharge and water remediation (biofloc, RAS).
- □ Highly energy-efficient aeration-mixing systems.
- □ Automation (electro-valves, feeders, etc).
- □ Organic waste recycling (sludge, animal tissue, etc).

Zoning.

Evolution of existing semi-intensive farms (low yield-high footprint)

- Genetics: strong focus on disease resistance.
- Intensive nursery and pre-grow multiphase systems, resulting in risk reduction, increased crop rotation and profitability.
- Zoning.

Questions?

Francois Brenta Biosecurity Expert

fbrenta@gmail.com Skype: fbrenta1 Mobile & WhatsApp : +34 685353936